Pratham Aggarwal

San Diego, CA | 619-953-7147 | praggarwal@ucsd.edu pratham-aggr.github.io | linkedin.com/in/pratham-agg | github.com/pratham-aggr

EDUCATION

Bachelor of Science, Data Science

Expected May 2027

Halıcıoğlu Data Science Institute, University of California San Diego

Relevant Coursework: Object-Oriented Design, Algorithm Design, Data Structures, Problem Solving and Complexity Analysis

SKILLS

Languages: Python, Java, C++, JavaScript, SQL, MATLAB, HTML, CSS3

Frameworks & Libraries: React, Node.js, Flask, Django, FastAPI, Pandas, Scikit-Learn, TensorFlow, PyTorch Tools & Platforms: Git, Docker, Linux/Unix, Bash/Shell, Google Cloud Platform, Hugging Face, Terminal Testing & Development: JUnit, REST APIs, Unit Testing, Documentation

EXPERIENCE

Quantitative Trading Intern

 $Mar\ 2025 - Jun\ 2025$

Student Foundation Investment Committee, Quantitative Technologies

San Diego, CA

- Achieved 12% improvement in trading returns by building a Deep Reinforcement Learning agent for a \$1.3M student-run investment fund, framing American options trading as an optimal stopping problem with adaptive policy learning and optimized early exercise strategies.
- Reduced Mean Squared Error to 0.96 by developing an LSTM-based stock price prediction model trained on 5 years of historical data and fine-tuned hyperparameters, improving forecast accuracy.
- Increased trading realism and decision quality by 18% through modeling a sequential decision-trading process that dynamically selects option type (call/put), expiration date, and exercise timing.

Data Science Research Analyst

Jun 2025 - Present

Climate Analytics Lab, Scripps Institution of Oceanography

San Diego, CA

- Preprocessed 243+ observational and projectional climate datasets (e.g., CMIP6) by converting Zarr files into adpyramid format and hosting them on Google Cloud, enabling rigorous testing of machine learning models' physical plausibility.
- Devised over 20 custom evaluation metrics and developed an ML pipeline to benchmark 50+ model outputs, enhancing transparency and enabling clear identification of black-box model limitations.
- Awarded a \$4,500 research scholarship under PhD climate scientist Duncan Watson-Parris; showcased work through a React/Node.js web application that visualized climate model evaluations, improving stakeholder understanding.

Program Manager & Consultant

Mar 2025 - Jun 2025

Solana Center & Data Science Student Society (DS3) Consulting

San Diego, CA

- Increased waste diversion rates by 15% by leading a team of 5 to analyze 2,000+ composting data records for San Diego startup Solana Center.
- Improved data accuracy by 25% and enabled reliable, scalable analysis by cleaning and transforming large-scale environmental datasets using Python.
- Boosted stakeholder satisfaction and ensured on-time delivery of project milestones by implementing structured workflows, effective tools, and adaptable project management practices.

Projects

HackFrontier Winner: Geospatial ML & CV tool for Homeless Services

<u>Learn more</u>

- Won a hackathon as the youngest among 100+ professionals by developing a ML forecasting system with 67% accuracy, leveraging 35+ transit, demographic, and geographic features to strategically place homeless service centers in San Diego.
- Deployed a real-time computer vision system using Oxen.ai and EyePop.ai to address the challenge of tracking a transient homeless population, providing live monitoring and precise demand insights to enable accurate, data-driven responses.

Simulating Black Hole Evolution: Comparative Analysis of Light and Heavy Seeds

Learn mor

- Demonstrated that seed mass impacts black hole growth rates by up to 40% through research visualizations developed over 20 weeks of PhD-supervised analysis using 10+ visualization techniques.
- Simulated growth trajectories for over 100 black hole seed scenarios using Eddington accretion models, analyzing evolutionary differences between light and heavy seeds over 20 million years of data.

Predictive Modeling of Building Energy Loads

Learn mor

- Achieved 91% accuracy in predicting building heating and cooling loads by implementing a multiple linear regression model using 8 key architectural and environmental features on 750+ samples.
- Improved energy efficiency strategies and reduced operational costs by 15% by applying k-means clustering to identify distinct consumption patterns and a 25% behavioral shift in load forecasting.